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Abstract

This study deals with bounds for the effective elastic moduli of granular materials in terms of micromechanical
parameters. The case considered is that of two-dimensional isotropic assemblies of non-rotating particles with bonded
contacts and a linear elastic contact constitutive relation. Based on variational principles, rigorous upper and lower
bounds are obtained for the elastic moduli. To this end, compatible and equilibrated fields are constructed from local
characteristics, based on approximate equilibrium and compatibility, respectively. Results of discrete element simula-
tions are used to compare the obtained bounds with the actual moduli. This comparison shows that the actual moduli
are narrowly bracketed by these bounds. The corresponding fields of relative displacement and force at the contacts are
analysed, showing fairly close agreement with those obtained from the discrete element simulations. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

In many industrial, geotechnical and geophysical applications dealing with granular materials, knowl-
edge of the mechanical behaviour of granular materials is important. This knowledge is expressed by a
constitutive relation, which usually is based on continuum mechanics, and involves heuristic assumptions.
Contrary to this approach is the micromechanical approach, in which a granular material is modelled as an
assembly of particles that interact at contacts. The micromechanical approach therefore incorporates the
discrete nature of granular materials. An objective of this approach is to derive macroscopic characteristics
from microscopic characteristics, such as contact geometry and contact constitutive relation.

The relatively simple case that is considered here is that of the effective elastic behaviour of two-
dimensional assemblies of non-rotating particles with bonded contacts. It is expected that many sa-
lient features of this simple system will hold, at least qualitatively, for more complicated systems. Some
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applications of the current model are the initial elastic deformation of dense or cemented granular materials
and certain fibrous media.

The outline of this paper is as follows. In Section 2 some micromechanical quantities and the contact
constitutive relation that is considered here are described. Then minimum potential energy and minimum
complementary energy principles are recapitulated in Section 3 that were derived by Kruyt and Rothenburg
(1998). To use these principles to obtain rigorous bounds for the moduli, compatible fields for the relative
displacements at the contacts and equilibrated fields for the forces at the contacts must be constructed. The
construction of compatible fields is fairly trivial, while a general construction of equilibrated fields of
contact forces (Satake, 1992) is described in Section 4. In Section 5, a compatible field that is close to force
equilibrium is determined based on local analyses, which in turn gives an upper bound for the moduli.
Similarly, based on local analyses, an equilibrated field that is close to compatibility is determined, which
yields a lower bound for the moduli. In Section 6 the results of discrete element simulations (Cundall and
Strack, 1979) are used to compare the obtained bounds with the actual moduli, and to analyse the ap-
proximate fields for the relative displacements and forces at the contacts. Finally, findings from this study
are discussed.

The usual sign convention from continuum mechanics is employed for stress and strain, according to
which tensile stresses and strains are considered positive. The summation convention is adopted, implying a
summation over repeated subscripts.

2. Micromechanics

Branch vectors I are defined as the vectors that connect the centres of particles p and ¢ that are in
contact. These branch vectors form closed loops, or polygons, as depicted in Fig. 1. For future reference the
polygon vector hfs (Rothenburg, 1980; Kruyt and Rothenburg, 1996) is also defined in Fig. 1: it is the vector
that is obtained by counter-clockwise rotation over 90° of the rotated polygon vector gt that connects the
centres of adjacent polygons R and S.

Contacts can be identified in two ways: by the particles involved, or by the polygons involved. The first
way will be indicated by using lower case superscripts, while the second way will be indicated by upper case
superscripts. The adopted convention for the equivalence of contact RS with contact pq is that the vectors
2" and I’ form a right-handed system. For example, in Fig. 1 contact RS (and not SR) is equivalent to
contact pq.

An important statistical measure of the contact geometry is coordination number I', that is the average
number of contacts per particle. It is a measure of the solid fraction #: for isotropic assemblies the relation
n = (n/I')/tan(n/I") was derived by Kruyt and Rothenburg (1996).

In the absence of body forces the quasi-static force equilibrium conditions for particle p are

ST =0, (1)

q

where the summation is over the particles ¢ that are in contact with particle p and f*” is the force exerted by
the boundary on particle p (if present). The term is f7 b only present for the “boundary particles” that are
hatched in Fig. 1.

The kinematic analogue of the equilibrium conditions is formed by the compatibility conditions for the
relative displacements between particle centres. The relative displacement 47 between particles p and ¢ is
defined by

A=yt P, ()
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Fig. 1. Polygons, branch vector, polygon vector and rotated polygon vector.

where U? is the displacement of the centre of particle p. The compatibility equations are (Rothenburg, 1980;
Kruyt and Rothenburg, 1996)

> AF 44 =0, (3)
S
where the summation is over the sides S that form polygon R and AX* is the relative displacement corre-

sponding to a boundary link of polygon R (if present). The term A" is only present for the “boundary
polygons” that are completely enclosed by thick black lines in Fig. 1.

2.1. Contact constitutive relation

The case considered is the relatively simple case of the linear elastic behaviour of bonded assemblies of
non-rotating particles. The contact geometry is shown in Fig. 2, showing the unit normal and tangential
vectors nt? and #7 at the contact. At the contact two linear springs are present in normal and tangential
directions with corresponding stiffnesses &, and &;. The constitutive relation at the contact is

fo =kady, S = kAL (4)

where /¢ and ff are the normal and tangential components of the contact force, while 47 and A; are the
normal and tangential components of the relative displacement at the contact. The stiffness ratio is defined
by )V = k[/kn.
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Particle p

Fig. 2. Contact geometry of two particles that are in contact.

The contact constitutive relation can also be expressed by stiffness matrix Sj; or a compliance matrix Cj;
[E =845 S = kanin + kSt

ijejo ij ; 11]’ (5)
¢ __ (e ge c _ 1 .cc 1 scqc
47 = Coff, G =qonini + 61

In the next subsection it will be shown that the cases with and without particle rotation constitute two
limit cases of a more complex constitutive relation.

2.2. Effect of rotation

To clarify the relation between the cases of rotating and non-rotating particles, a more complex contact
constitutive relation is considered where contact couples are also included, besides the moment due to the
contact force (see also Chang and Liao, 1990; Oda and Iwashita, 2000). Note that this contact constitutive
relation is only considered in this subsection.

The rotation of particle p is denoted by w”. Including particle rotation, the relative displacement 67 at
the contact between particles p and ¢ is given by 07 = [U + e;;r’ 0] — [U} + e;r}?@’], where e;; is the two-
dimensional permutation tensor and #? is the vector from the centre of particle p to the contact point
between particles p and ¢ (see also Fig. 2). The linear elastic contact constitutive relation for force 7 and
couple k™ is

SIS S = k(o — of), “

where S}/ is identical to that in Eq. (5) and &, is a couple stiffness.
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Fig. 3. Effect of couple stiffness &, on effective shear modulus G as computed from discrete element simulations. The results are for
coordination number I' = 4.0 and stiffness ratio A = 1.0. Here R,,, denotes the average particle radius.
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Discrete element simulations with bonded contacts were performed for this case which includes particle
rotation, and the effect on the effective shear modulus of varying the couple stiffness &, was studied at
constant normal and tangential stiffnesses. The result in Fig. 3 shows that the case of rotating particles
without contact couples (trivially) corresponds to &, — 0, while the case of non-rotating particles corre-
sponds to k, — oo.

3. Variational principles

Two variational principles were derived by Kruyt and Rothenburg (1998) for assemblies of non-rotating
particles with the linear elastic contact constitutive relation (4). These principles are discrete analogues of
the classical minimum potential energy and minimum complementary energy principles in continuum
elasticity (see for example Washizu, 1968).

3.1. Minimum potential energy principle

Two relative displacement fields {47} and {47} are considered that satisfy the compatibility conditions
(3) and are consistent with displacements at the boundary B that correspond to uniform strain along the
boundary. The associated force fields are {f} and {f;“}. The force field {f} satisfies the equilibrium
conditions (1), contrary to the force field {f*}. Then the minimum potential energy principle is

1 1 C gc 1 *C f*C
§Uijgij=§ZAifi <§Zl‘ifi (7)
ceS ceS
with equality if and only if 47 = 4.
With prescribed strain, an upper bound for the moduli is obtained by evaluating the energy corre-
sponding to a relative displacement field {47}.

3.2. Minimum complementary energy principle

Two force fields {f} and {f} are considered that satisfy the equilibrium conditions (1) and are
consistent with forces at the boundary B that correspond to uniform stress along the boundary. The as-
sociated relative displacement fields are {4} and {4;°}. The relative displacement field {4} satisfies the
compatibility conditions (3), contrary to the relative displacement field {4;}. Then the minimum com-
plementary energy principle is

l *C *C 1 C c 1
3 dofear 7 oS = 5 Oiftij (8)
ceS cesS
with equality if and only if f* = f*.
With prescribed stress, a lower bound for the moduli is obtained by evaluating the energy corresponding
to a force field {f;*}.

3.3. Uniform strain and uniform stress

Kruyt and Rothenburg (1998) used the minimum potential energy principle (7) to derive an upper bound
for the moduli based on the uniform strain assumption

A7 = gyle, ©)
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where /5 is the branch vector defined in Section 2.
The minimum complementary energy principle (8) was used to derive a lower bound for the moduli
based on the uniform stress assumption

JiC = oyhs, (10)

where 4 is the polygon vector defined in Section 2.

4. Compatible and equilibrated solutions

To use these variational principles, general expressions for compatible relative displacement fields and
equilibrated force fields must be constructed. The first is trivial, while the second is more involved. Both will
be discussed here to show the analogy between the two approaches.

4.1. Compatible solutions

The full family of compatible solutions is obtained when the relative displacement field {4¢} is derived
from a particle displacement field U? according to Eq. (2). It is easily verified that this form satisfies the
compatibility equations (3).

Prescribed boundary displacements determine the displacement of the boundary particles (see Fig. 1).

4.2. Equilibrated solutions

In the absence of body forces the full family of equilibrated solutions, as given by Satake (1992), will be
recapitulated here. This method shows analogies with the method of mesh currents in electrical network
theory (see for example Murdoch, 1970) and the Airy stress function in two-dimensional elasticity (see for
example Washizu, 1968). The analogy with the Airy stress function will be shown in detail in Section 4.2.1.

.Pq pa  , pb .pc ,.pd
zq:fi =fi +f

= [0 -0 1+ [0 - &7 1+ [0 -0 |+ [0 -] =0

Fig. 4. Construction of equilibrated contact forces using force potentials.
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A vector quantity ®F, the force potential, is associated with each polygon. The force £*S at the contact
corresponding to polygons R and S is then defined by

I8 = @8 — ok, (11)

It is easily verified that this construction of contact forces leads to equilibrium for all particles. An
example is shown in Fig. 4. Note further that this form satisfies Newton’s third law

[P=fR= ok — @ = R = g, (12)

Unlike their kinematic equivalents the particle displacements U?, these force potentials @% do not have a
direct physical meaning.

The force potentials of the boundary polygons (see Fig. 1) are determined from prescribed forces at the
boundary by assigning an arbitrary value to the force potential of an initial boundary polygon and using
Eq. (11) to compute the force potential of subsequent polygons along the boundary.

4.2.1. Relation with the Airy stress function

Here the analogy between the construction with force potentials and the Airy stress function in two-
dimensional elasticity will be shown. First a correspondence between the stress tensor o;; and a continuous
force potential field is postulated

_apy _apy
0P o =-7%, 0= "%
— 2 1 1
Oij = —€jk o ) ob (13)
J— 2 J— 2
Oxy 021 = — o 0 = -

It is easily verified that this definition satisfies the quasi-static (continuum) equilibrium conditions without
body forces 0g;;/0x; = 0.

Now it will be shown that the expression (13) is consistent with an expression for the average stress ¢;; in
terms of boundary forces. The area of the region of interest is S and its boundary is B. The average stress is
given by 6;; = (1/5) 3., 7PxP, see for example Kruyt and Rothenburg (1996). From Eq. (13) and Gauss’
theorem it follows

(OB
N N B

Xie

where #; is the normal vector at the boundary with associated tangential vector ¢ (see also Fig. 1). By noting
that —eyn, = t; = dx;/ds and performing a partial integration along the closed boundary B, this can be
rewritten as

_ dv; , do;, N
SJ[j—/B¢[ deS— ; ds xde—¥f, .xj, (15)

where the final equality follows after some algebra from the assumption of point loading, the definition of
contact force in terms of force potentials (11) and the adopted convention from Section 2 for the equiv-
alence of contact RS with contact pgq.
Finally, the relation with the Airy stress function y is established by the definitions
Oy Oy
- b, == 16
0, ’ . ox; ( )
Note that the usual definitions of the stress components in terms of second derivatives of the Airy stress
function y are retrieved
%y %y %y
—=, Op=0)=———=—, 0pn==>. 17
el 12 21 o, 2 o (17)

D, =

g1 =
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From Eq. (13) it follows that the force potential field that corresponds to uniform stress is given by
®;(x;) = —oyepx; + D, (18)

where the arbitrary constant vector ®° does not affect the value of the contact forces.

The derivation of the construction of equilibrated force fields differs from the exposition of Satake (1992)
in the following points: (i) it is demonstrated simply and directly that this construction leads to equilibrium
for all particles; (ii) it is explained how boundary conditions are incorporated; (iii) the compatibility con-
ditions are defined directly and in a physical manner; (iv) the analogy with the Airy stress function is shown
in detail.

5. Local adjustment fields

To obtain an upper bound for the moduli from the minimum potential energy principle (7), a compatible
relative displacement field will be constructed which leads to approximate equilibrium. To obtain a lower
bound for the moduli from the minimum complementary energy principle (8), an equilibrated force field
will be constructed which leads to approximate compatibility. Both approaches involve a local adjustment
to a uniform field that uses only information on neighbours (particles or polygons).

5.1. Compatible relative displacement field

Consider a single particle p whose displacement U? will be determined by a local adjustment: assume that
the displacements of the particles ¢ with which it is in contact, move uniformly according to the prescribed
boundary strain, while the particle itself exhibits a fluctuation #/ on this field

Ul = e, X] +ul, Ul = e;X]. (19)
The corresponding relative displacements at the contacts are given by

M= e — il (20)

1

For each particle p its fluctuation displacement « is determined by requiring static equilibrium (1), or
equivalently minimising the local potential energy with the fluctuation displacement « as the only degree of
freedom

{ngq}uj? = SHely. (21)
q q

Since the boundary displacements are kept the same (zero displacement fluctuation on the boundary)
and the average strain ; is determined by the boundary displacements, &; = (1/S) [, u;n;ds (see for ex-
ample Kruyt and Rothenburg, 1996), the average strain corresponding to the displacement fluctuations
{ul'} is zero.

This procedure of computing an estimate of the particle displacement is performed sequentially for all
particles. Note that these computations are uncoupled.

The computation of the individual displacements is based on the assumption that its neighbours ¢ move
uniformly according to the prescribed strain. Since this will not be the case exactly, due to the presence of
fluctuations u/, the proposed procedure does not result in equilibrium of all particles.

By setting all fluctuation displacements ! = 0, the uniform strain bound derived by Kruyt and Roth-
enburg (1998) is retrieved, see also Eq. (9).
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5.2. Equilibrated force field

Consider a single polygon R whose force potential ®* is determined by a local adjustment: assume that
the force potentials of the neighbouring polygons S conform uniformly to the prescribed boundary stress (as
given by Eq. (18)), while the polygon itself exhibits a fluctuation @* on this field

O = —oueuXi + ¢, B = —oyenX;. (22)
The corresponding forces at the contacts are given by
f;RS _gz/e/kgk - d)f UtthS d’f; (23)

where the rotated polygon vector g 5 and the polygon vector hRS are depicted in Fig. 1.
For each polygon R its ﬂuctuatlon qS is determined by requlrlng compatibility (3), or equivalently
minimising the local complementary energy with the fluctuation ¢1 as the only degree of freedom

{ > Cﬁs}¢f =D Clfout®. (24)
N S

Since the boundary forces are kept the same (zero fluctuation of the force potential on the boundary)
and the average stress is determined by the boundary force, 6;; = (1/S) 345 f: ﬁxﬂ (see for example Kruyt
and Rothenburg, 1996), the average stress corresponding to the force potential ﬂuctuatlons {qS } is zero.

This procedure of computing an estimate of the force potentials is performed sequentially for all
polygons. Note that these computations are uncoupled.

The computation of the individual force potentials is based on the assumption that its neighbours S
conform uniformly to the prescribed stress. Since this will not be the case exactly, due to the presence of
fluctuations ¢, the proposed procedure does not result in compatibility of all polygons.

By setting all fluctuations d)f = 0, the uniform stress bound derived by Kruyt and Rothenburg (1998) is
retrieved, see also Eq. (10).

6. Comparison with discrete element simulations

Discrete element simulations, as proposed by Cundall and Strack (1979), were performed with large
assemblies of 50,000 disks from a fairly wide lognormal particle size distribution for nine different isotropic
assemblies with average coordination numbers I' in the range 4-6, and for each average coordination
number for nine different stiffness ratios 4 in the range 0.05-1.0. Two loading paths are sufficient for iso-
tropic assemblies, compressive and shearing loading. The simulations are fully described in Kruyt and
Rothenburg (2001). The bulk and shear modulus are determined from

o1+ 0n = 2K (e + &2),
o1 — on =2G(&1 — &), (25)
012 = 2G812.

First the actual moduli will be compared with those obtained from the discrete element simulations.
Then some characteristics of the local adjustment fields of the relative displacement and force at the contact
will be compared with those obtained from the simulations.

Although the described method will be compared with results from simulations on assemblies of disks,
the method is equally applicable to particles of different shapes.
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6.1. Bounds for the moduli

The obtained upper and lower local adjustment bounds for the moduli, together with the uniform strain
and stress bounds of Kruyt and Rothenburg (1998), are given in Fig. 5 for compressive and shearing
loading for various coordination numbers I" and stiffness ratios A. These improved local adjustment bounds
are much tighter than the uniform strain and stress bounds, especially for low coordination numbers and in
shear for high coordination numbers.

6.2. Group averages for relative displacements and forces

The boundary conditions, prescribed displacements or forces, tend to impose a regular pattern on the
relative displacement and force at the contacts, as can be expected from continuum mechanics. This pattern
depends on the orientation of the contact normal. Therefore it is logical to group contacts with similar
orientations, and to compute group averages for relative displacement and force at contacts (see for example
Rothenburg, 1980; Bathurst and Rothenburg, 1988; Kruyt and Rothenburg, 2001).

The regular pattern that can be expected from continuum mechanics for the relative displacement and
force at contacts can be expressed by generalized uniform strain and generalized uniform stress expressions

a4 =Cogliy [ = Coyl, )

where { = 1 for uniform strain and & = 1 for uniform stress. Note that { and ¢ give the non-dimensional
amplitudes of relative displacements and forces, respectively.

The group averages, corresponding to the local adjustment fields and to the actual fields from the
simulations, for relative displacement and force at the contacts were computed. They matched the ex-
pressions (26), with { and ¢ that generally depend on the loading path and are different for normal and
tangential components. The results for coordination number I' = 5.0 are shown in Fig. 6 for the normal
and tangential components of relative displacement and force. A fairly good agreement is found between
actual and local adjustment fields, especially for the relative displacement.

More detailed results for the coefficients { for generalized uniform strain are presented by Kruyt and
Rothenburg (2001).

6.3. Correlation function and length

The particle displacements are to a large extent determined by the imposed boundary displacements
(prescribed strain). Hence the particle displacement U” can be expressed as the sum of two terms, the
regular displacement U’ = ¢;X; corresponding to uniform strain and a fluctuation «/. Contrary to the
regular displacement U?, this fluctuation will be independent of position for a statistically homogeneous
assembly. Measures for the distance over which displacements of two particles are correlated are the
correlation function p,(r) and correlation length L,. For the fluctuation displacement u they are defined by
the averages

u(x)u(x +r)

pur) =" L= [ e 1)
u 0

with analogous definitions for the correlation function p,(r) and the correlation length L4 of the force
potential fluctuation. Note that for isotropic and statistically homogeneous assemblies under compressive
loading, the right-hand side of Eq. (27) does not depend on position x and relative position r, but only on
the distance r between points.
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Fig. 5. Comparison of bounds with actual bulk modulus K and shear modulus G from discrete element simulations for various co-
ordination numbers I" and stiffness ratios 4; upper and lower line: uniform strain and uniform stress bounds; thick grey lines: improved
bounds from local adjustment fields; triangles: actual moduli from discrete element simulations.

The correlation functions p,(r) and p,(r) are shown in Fig. 7, as determined from the results of the
discrete element simulations. Due to the finite particle size, no data are available for small distances, except
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Fig. 6. Generalized uniform strain and stress: comparison of results from simulations and local adjustment bounds for coordination
number I' = 5.0 in shear for various stiffness ratios A.

the trivial p,(0) =1 and p,(0) = 1. Also shown in Fig. 7 is the natural logarithm of the correlation
functions, which shows a linear behaviour for larger distances. This means that the correlation functions
themselves exhibit an exponential decay. As expected for an isotropic assembly, correlation functions for
both components of the displacement and force potential fluctuations were practically identical.

The computed correlation lengths are L, = 6R,,, and L, = 29R,,,, where R,,, is the average particle
radius. The size of the periodic box Loy is such that Lyoy = 425R,,.

For properly conducted discrete element simulations where (periodic) boundary effects are negligible, we
must have Ly /2 > L,. Note that discrete element simulations are generally formulated in terms of dis-
placements. This requirement can be reformulated into a lower bound for the required number of particles N

Force potential

Linear fit porce potential

) Inp -1p
0.4
sk Linear fit
Displacement Displacement
% 5 10 15 2y 5 10 15
r/R avg r/R avg

Fig. 7. Correlation functions p of displacement fluctuation and force potential fluctuation, as determined from the discrete element
simulation for coordination number I = 5.0 and stiffness ratio A = 0.5 in compression.
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in simulations. For a periodic box of spatial dimension d (d = 2 or 3) with a square (d = 2) or cubic packing
(d = 3) of the particles we have N'¥2R,,, = Lyo,. With typical values of L, 2 6R,, and Lyox/2 = 5L,, we
obtain the requirements N = 900 in two dimensions and N > 27000 in three dimensions (assuming that the
correlation length in three dimensions is the same as that in two dimensions).

7. Discussion

A micromechanical study was made of the elastic behaviour of two-dimensional assemblies of non-ro-
tating particles with bonded contacts. Based on the results of discrete element simulations, it was shown
that the case of non-rotating particles is the limit case of couple stiffness k&, — co. In the absence of body
forces, the family of equilibrated contact forces is described, using force potentials (Satake, 1992). Applying
minimum potential energy and minimum complementary energy principles, rigorous upper and lower
bounds for the elastic moduli can be determined. Based on local adjustments to uniform fields, compatible
displacement fields and equilibrated force potential fields are constructed that approximately satisfy
equilibrium and compatibility, respectively. A comparison with the actual moduli, as determined from
discrete element simulations, demonstrates that these bounds tightly bracket the moduli. More detailed
analyses of the relative displacement and force fields at the contacts show that these match the actual fields
fairly closely. The computed correlation length L, is fairly small, while L, is larger. This indicates why the
formulation based on displacements gives a more accurate prediction of the actual fields than the for-
mulation based on force potentials (see Fig. 6).

The physical picture that emerges from this study is that the behaviour, either particle displacement or
force potential, consists of two parts: (i) a regular part corresponding to a uniform field and (ii) a fluctuation
part. The regular part is determined by the prescribed boundary conditions, while the fluctuation part is
primarily determined by its local environment. This is corroborated by the fairly small correlation lengths,
especially L,. Whether this also holds for loose systems with particle rotation, contrary to the bonded sys-
tems without particle rotation that were studied here, has to be investigated. Results of photoelastic ex-
periments (for example De Josselin de Jong and Verruijt, 1969; Drescher and De Josselin de Jong, 1972; Oda
and Konishi, 1974) show that force chains are formed, which may be indicative of long range correlations.
The condition Ly > L, observed here may be a quantitative indication of the presence of force chains.

The obtained bounds can be further improved by considering other fields for the displacement and force
potential fields. This can be accomplished by adding more near-neighbours in the local adjustment analyses.
Current research is dealing with the extension and application of the proposed procedure towards the more
complex case with particle rotations.
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